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INTRODUCTION

: Increasingly strict effluent phosphorus limitations have resulted in
renewed research into phosphorus removal processes. One process being con-
sidered is low-level lime addition to primary clarifiers.!*2 This method of
phosphorus removal will result in large quantities of primary sludges contain~-
ing high concentrations of lime and its reaction products.

‘ Anaerobic digestion is one of the most cost effective methods of sludge

‘ stabilization, particularly with today’s rising energy costs. The Army
employs anaerobic digestion for sludge stabilization in many waste treatment
plants. Any decrease in the rate of solids destruction in the anaerobic
digestion process can result in significantly higher digester volume require-
ments. The characteristics of lime sludge degradatiofl were researched to
determine the feasibility of using this technique with existing equipment to
handle the lime sludge resulting from phosphorus removal.

In order to determine the feasibility of using anaerobic digestion on lime
sludges, the extent of biodegradation must be defined in view of the following
considerations:

1. The stabilized sludge must be of acceptable quality for disposal for
the anaerobic digestion process to be feasible.

2. Since supernatant return to the head of the plant is a standard pro-
cedure for digester operation, the re-release of phosphorus within the
digester is of prime importance.

3. The lime coagulation process may concentrate metals or organic com~
: pounds within the digester that could inhibit the process or prove to be
‘ toxic.

4. Finally, the conditions for digestion of sludges resulting from the
low~level l1ime addition process for phosphorus removal must be defined for
process control.

LITERATURE REVIEW

GENERAL CONDITIONS

A 2 A i s s 40

' The process of anaerobic digestion may be considered to occur in three
stages, The first stage is hydrolysis of solld organic matter by extra-
cellular enzymes.3** After the solid matter is broken down into relatively
short chains (sugars, starches, fatty acids, and proteins), the acid formers :
then produce volatile organic acids, primarily acetic and propionic acids plus ot
other small organic compounds, from the remains of the organic matter. The oo
organisms that comprise the acid former population are many and varied. In
essence the acid formers are a group of symbiotic organisms that eventually
produce acetic and propionic acids as the predominant end products.5 The
third and final stage {8 methane formation., Methanogenic bacteria convert
short-chain organics, primarily acetic acid, to methane (Cﬂa) and carbon
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dioxide (Cof).5 However, other compounds, such as formic acid, propionic

acid, butyric acid, ethanol, acetone, leucine, valine, and stearic acid, can
be converted to CH,.578

The acid formers and methane formers live in a delicate balance. 1In order
for the process to be stable, the rate of acid production must be equal to or
less than the rate of acid conversion to methane. If the acids begin to
accumulate, the pH will drop and cause digester failure. Prior to 1960 vola-
tile acid concentrations greater than 2,000 mg/L as acetic acid were con-
sidered to be toxic to anaerobic digesters; however, in the early 1960’s
McCarty and associates performed controlled studies on volatile acid additions
and these results showed that acid concentrations of up to 6,000-8,000 mg/L as
acetic acid could be maintained and not be toxic to the methane formers,
provided the pH be maintained between 6.6 to 7.4.9 Digester failure may also
occur at high pH due to ammonia or perhaps unionized volatile acid toxicity.

Anaerobic digesters are normally operated in the mesophilic range of 90°
to 110°F (32° to 43°C) but are extremely sensitive to temperature change.’
Stable digester operation usually requires temperature changes not to exceed
1°F per day.

ORGANIC LOADING

If the organic loading were suddenly increased, excess substrate for the
acid formers would be present. As the availability of food is increased, the
rate of cell production and acid former population will increase. Since the
rate of acid formation is dependent upon the microbial population, more acid
will be produced and as more acid becomes available, the methane formers will
reproduce more rapidly. This rapid growth leads to a serious problem. The
average growth rate for the methane formers is considerably slower than the
average growth rate for acid formers.!0 Because of the growth rate imbalance,
the volatile acids will tend to accumulate in the system after an organic
shock load, resulting in digester upset and failure.%:11713 Typical design
volatile solids loadings for mesophilic, high rate anaerobic digesters are
from 0.15 to 0.40 pounds of volatile solids per day per cubic foot of digester
capacity (2,400 to 6,400 grams per cubic meter per day).

AMMONTA

Ammonia toxicity is a common cause of digester failure.?:1%"18% Ammonia in
high concentrations or at high pH has been shown to be toxic or inhibitory to

anaerobic digestion. The effect of ammonia on anaerobic digestion is showm in
Table 1.

PHOSPHORUS

Lime addition 1s a proven method for phosphorus removal.l*2 After lime
addition, phosphorus is considered to be in the form of calcium hydroxyapatite
(Cag-(OH)(PO,)3), which will not resolubilize under digester conditions.%:17
Thus, it is expected that supernatant return from the digesters will not add a
significant phosphorus load to the plant influent. TIn Newmart, Ontario,
addition of lime to the primary clarifiers for phosphorus removal and sub-
sequent digestion of the 1ime sludge resulted in a decrease of phosphorus in
the digester supernatant from 150 mg/L PO,~P when digesting raw primary sludge
to 4 mg/L PO,~P when digesting primary lime sludge.18

10
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TABLE 1. EFFECT OF AMMONIA NITROGEN
ON ANAEROBIC DIGESTIONY

Concentration Effect
mg/L NH3—N ]
1
. |
50-200 Beneficial *
200~1,000 No adverse effects 1
1,500-3,000 Inhibitory at pH ]

over 704"706 b

Above 3,000 Toxic

HEAVY METALS

A variety of heavy metals have been shown to be inhibitory or toxic to :
anaerobic digestion.9:19723 (oncentrations of heavy metals inhibitory to ]
anaerobic digestion are given in Table 2. It should be noted that in order to :
be toxic the heavy metals must be in soluble form.

TABLE 2. TOTAL CONCENTRATION OF INDIVIDUAL METALS
REQUIRED TO SEVERELY INHIBIT
ANAEROBIC DIGESTION?

ik oot 4 o

Metal % of mg/L at 4% Soluble Metal
Metal Dry Solids Dry Solids mg/L i
Copper 0.93 372 0.5
Cadmium 1.08 432 -
Zinc 0.97 388 1.0
Irecn 9.56 3,824 -
. chromi um®™* 2.20 880 3.0
Nickel - - 2.0

LIGHT METAL CATIONS
Work done in the early 1960’s has shown that the light metal cations

(calcium, magnesium, potassium, and sodium) are capable of causing stimula-
tory, inhibitory or toxic effects in anaerobic digesters.l%"16,19,20,24=26
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These cations are of little concern in the digestion of sludges from municipal
or domestic waste treatment; however, the addition of large amounts of calcium
and magnesium to the sludges during lime treatment for phosphorus removal

results in concern about the effects of these cations on digester performance.

In the studies carried out by Kugelman and McCarty,15:25:26 it wag found
that calcium and magnesium were toxic to the methanogenic bacteria, causing 50
percent reductions in acetic acid utilization rate at slug doses of 0.11 M
(4,400 mg/L Ca) and 0.08 M (1,900 mg/L Mg), respectively. It was also found
that gradual accumulation of these cations caused inhibition at higher concen-
trations. Sodium and/or potassium were found to produce antagonism to calcium
and magnesium inhibition at concentrations of 0.002 M (46 mg/L Na and 98 mg/L
K). In addition, calcium and magnesium were found to be synergistic at mag-
nesium concentrations as low as 0.002 M (48 mg/L Mg). These studies were
carried out 1n carefully controlled substrates with enrichment cultures of
methanogenic bacteria only. It is antic: vated that in the extremely complex
substrates (sludge), complex interactlions between antagonistic and synergistic
compounds will occur. Also, significant variations from these cation concen-
trations and the cation concentrations summarized in Table 3 may occur.

The US Envirommental Protection Agency (USEPA) has summarized work done on
cation toxicity.? Concentrations of cations found to be stimulatory and
inhibitory are shown in Table 3.

TABLE 3. STIMULATORY AND INHIBITORY CONCENTRATIONS
OF LIGHT METAL CATIONS%2

Concentration (mg/L)

Moderately Strongly
Cation Stimulatory Inhibitory Inhibitory
Calcium 100-200 2,500-4,500 8,000
Magnesium 75-150 1,000-1,500 3,000
Potassium 200-400 2,500-4,500 12,000
Sodium 100-200 3,500-5,500 8,000

a. For acetate-utilizing methanogenic bacteria.

It should be noted that the concentrations given in Table 3 are for single
cation effects on acetate-utilf{zing methanogenic bacteria only. Large varia-
tions in effect at a given concentration may be expected in complex sub-
strates. The synergistic and antagonistic cation combinations are summarized
in Table 4. The information presented in Table 4 was derived from acetate-
utilizing cultures of methanogenic bacteria and may be assumed to be appli-
cable only to these organisms.
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TABLE 4. SYNERGISTIC AND ANTAGONISTIC
CATION COMBINATIONS92

Toxic Synergistic Antagonistic
Cations Cations Cations
Ammonium Calcium, magnesium, Sodium

potassium
Calcium Ammonium, magnesium Potassium, sodium
Magnesium Ammonium, calcium Potassium, sodium
Potassium - Ammonium, calcium,

magnesium, sodium

Sodium Ammonium, calcium, Potassium
magnesium

a. For acetate-utilizing methanogenic bacteria.

MATERIALS AND METHODS

SEWAGE SOURCE

The raw sewage source for this project was from the collection system
serving the w§¥sing areas at Fort Detrick, Frederick, Maryland. A Moyno
Grinder Pump Y was located in a manhole downstream from the Fort Detrick
housing area and upstream from the various chemical and microbiological lab-
oratories located at Fort Detrick. Therefore, the sewage was strictly of a
domestic origin.

SLUDGE PRODUCTION

Domestic sewage was pumped at 7.5 gpm into a grit chamber (retention time
33 min) equipped with a grease trap. Following the grit chamser was a 375 gal
circular clarifier with a surface overflow rate of 859 gpd/ft<, a weir over-
flow rate of 859 gpd/ft, and a retention time of 50 min. Sludge for the
control digester was taken from the primary clarifier.

Effluent from the grit chamber was pumped at 1.5 L/min through a chemical
addition system (Fig. 1) to produce the lime sludge. The chemical addition
system consisted of a rapid mix unit having a 5 min retention time, a floccu-
lation unit having a 50 min retention time, a clarifier hgving a weir overflow
rate of 115 gpd/ft and surface overflow rate of 75 gpd/ft®, and a 30 gal
continuously mixed lime holding tank. A Chemtrix Model 47 pH controller
maintained the pH in the flocculator at 9.5 to simulate the low=level lime
addition process for phosphorus removal. The lime sludge was removed daily.
An identical sludge production system was used during run 4 to produce sluige
from a reagent grade lime. Table 5 presents the characteristics of the two
grades of lime used during the project.
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TABLE 5. LIME SOURCES AND QUALITY FOR USE
IN THE CHEMICAL ADDITION SYSTEM

1. Calcium Hydroxide Powder (Reagent Grade)
UOS.P. - F.C.C., Food Gt'ade
J.T. Baker Company

2. Hydrated Lime (commercial grade) Guaranteed Quality

Min. calcium oxides 71.00%
Min. magnesium oxides 1.00%
Min. total oxides 72.00%
Calcium hydroxide 93.00%

Max. oxides of calcium and magnesium present
as carbonates

As carbonates 1.00%
E.N.P. 1.29
Ca0 equivalent 71.00%

Sludges for the digesters were produced and collected daily during runs !
through 3. Sludge production for run 4 was done in batches lasting approxi-
mately 20 days before the next batch was produced. These batches were stored
in 20 L containers and refrigerated at 4°C. FEach batch was ad justed by
gravity thickening or water dilution as necessary to adjust the organic
strength of the sludge. Variations in feed strength did occur during run 4;
however, the large oscillations in feed sludge quality that were present in
runs 1 through 3 were greatly reduced.

DIGESTERS

Three New Brunswick Scientific Company Model 19 Fermentors with foam
breaker were used as anaerobic digesters (Fig. 2). Each digester was main-
tained at 35°C throughout the study. With a working volume of 11 L, a 27.5
day retention time was maintained. Continuous mixing was sustained through
internal agitation, and a constant speed of 200 rpm was maintained for the

turbine impellers. The foam breaker impeller speed was kept constant at
600 rpm.

EXPERIMENTAL

Three digesters were run in parallel for all four runs. The digesters
were seeded with actively digesting anaerobic sludge from the wastewater
teatment plant in Hagerstown, MD. Raw primary sludge was fed to all three
digesters during start-~up, until the volatile acid concentration became steady
(200-800 mg/L as acetic acid). Gradually digesters 1 and 3 were fed increas-
ing amounts of lime sludge mixed with the primary sludge, until only lime
sludge was being introduced as the feed material. Digester 2 served as the
control unit and was fed only primary sludge.
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Figure 2. New Brunswick Mxdel 19 fermentors. }J




All reactor effluent not used for sample analysis was saved and kept
active in sealed 5-gal carboys at room temperature. At the end of runs 1 and
2, the saved sludge was mixed with the contents of all three digesters. The
digesters were then reloaded and start-up was initiated. The mixing of the
sludges served to upset the digesters between runs 2 and 3 to see 1{f the same
volatile solids destruction would be achieved and to determine if any toxic
substances might accumulate during the study. Run 1 was considerably longer

than runs 2 and 3 in order to determine {f any build-up of toxic substances
occurred.

After run 3, an evaluation of the data showed that an inhibitory effect
persisted throughout runs 1 through 3. Run 4 was designed to define the cause
of the inhibition. All three digesters for run 4 were restarted with anaero-
bic sludge from the Hagerstown sewage treatment plant. Digester 2 remained
the control. Since a synergistic effect between calcium and magnesium was
suspected, digester 1 was fed a lime sludge with magnesium impurities in the
lime (commercial grade lime), and digester 3 was fed a lime sludge made from
reagent grade lime. If magnesium produces a synergistic effect with calcium,
a lower volatile solids destruction rate would be expected. In an attempt to
reverse the inhibition, sodium bicarbonate (NaHC0,) was added to digesters 1
and 3 near the end of run 4. Sodium when added to a calcium and/or magnesium
solution has been shown to act as an antagonist in methanogenic cultures.3:15

ANALYTICAL METHODS

Samples were analyzed by USAMBRDL chemistry personnel. The sample sched-
ule is presented in Table 6 for runs 1 through 3 and in Table 7 for run 4,
The procedures for the tests are as follows:
Total Solids: Standard Methods27 Part 208A
Total Volatile Solids: Standard Methods2’ Part 208E

Ammonia Nitrogen: Standard Methods27 Part 418A for preliminary distillation
and Part 413 J for electrode analysis

Soluble Phosphorus: Standard Methods Part 425A, preliminary filtrarion;
Part 425C, Digestion; and Part 425D, Colorimetric Method

Total Alkalinity: Standard Methods Part 403 for
runs 1 through 3; Arm and Hammer Method28 for run 4

Volatile Acids: Gas Chromatography29, runs 1 through 3;
Arm and Hammer Method?8, run 4

Light Metal Cations: EPA30 Atomic Absorption
Heavy Metals: EPA30 Atomic Absorption

C0y: Orsat analysis for CO,




TABLE 6. SAMPLE SCHEDULE FOR RUNS 1 THROUGH 3

Test San Mon Tue Wed Thu Fri Sat 4
Total solids - b ol ¢ X X X - ;
4
Volatile solids - X X X X X - ) ‘
4
Ammonia - X X X X - - i
Soluble phosphorus - - X - X - -

Total alkalinity

1
E]
'
>
]
>
|

Volatile acids - X - X - X -
PH X X X X X X X
! a. X = The day when the analysis was performed.
TABLE 7. SAMPLE SCHEDULE FOR RUN 4
Test Sun Mon Tue Wed Thu Fri Sat
Total solids - ) D ¢ X X X -
Volatile solids - X X X X X -
Chemical oxygen demand - X X X X X -
Soluble phosphorus - - X - X - -
Ammonia - X - X - X -
Total alkalinity - X X X X X -
Volatile acids - X X X X X -
Light metal cations | - X - - - - - .
| Orsat CO, X X X X X X X i
CH, gas chromatography - X - X - X - - i
pH X X X X X X X !

a. X = The day when the analysis was performed.

18




ey

AN AT, oA s S

PR

The methane percentagigyas measured on a gas chromatograph using an FID
detector and a Carbo Pack ¥ C/0 0.3% CW 20 M/0.1X H4PO; column. A calibration
curve was prepared each day from a pure methane standard. The chart response
from each unknown sample was compared to that day’s calibration curve, and the
methane percentage was determined. The samples were collected by displacing a
water/H,SO,/salt solution in a sample bottle. The injection sample was taken
from the sample bottle without introducing any air into the system. The GC
analysis of the gas percentages served as a control for the Orsat? analyzer.
The GC analysis gave the percent methane. The CO, percentage was determined
by difference. The differences in CO, percentages were always within 1 or 2
percentage points (well within experimental error).

GAS COLLECTION AND MEASUREMENT

During the first three runs, two Precision Scientific wet test meters were
used to measure gas production for digesters 1 and 2. Gas from digester 3 was
collected in a water displacement system. Before the commencement of rum 4, a
new water displacement gas collection system was built for each reactor
(Fig. 3) to facilitate gas sampling.

The gas collection system shown in Figure 3 consisted of six inverted
1,000 mlL graduated cylinders submerged in a plexiglass tank with interior
dimensions of 39 15/16 in by 10 1/16 in by 14 in.. The graduated cylinders
were connected by a manifold. The manifold allowed the gas from all six
cylinders to feed simultaneously into the gas sampling bottles. As the gas
cylinders were filled, the water level in the tank would rise. The change in
the water level in the tank was much less than the change in the water level
in each column. When an observed volume of 4 L of gas was collected the tank
water level would rise 0.66 in, while the water level in the graduated cylin-
ders would drop 9.2 in. Using a pressure correction factor on the observed
volume, the system was calibrated and a 3 percent error was observed.

FEEDING AND SAMPLING PROCEDURES

The daily feeding and sampling procedures were as follows for runs 1
through 3:

(1) The lime sludge and primary sludge were collected and sampled.

(2) The gas volume measurements were taken, and time was recorded.

(3) The agitator speed was increased from 200 to 500 rpm for 5 min before
sampling to ensure that complete mix conditions were achieved and to break up

any deposits of solids on the bottom or walls of the reactors.

(4) The ambient temperature was recorded to allow correction of the gas
volumes to standard temperature and pressure (STP).

(5) Between 400 and 500 mL of the contents of each digester was pumped
into a separate beaker. As the digested sludge was being pumped into each
beaker, the pH was measured.

(6) Samples of the reactor effluent were then taken for analysis.

19
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(7) The feed pH was adjusted as necessary.

(8) The feed lines were charged with the feed sludge to minimize the
amount of air introduced into the system. Four hundred milliliters of sludge
were pumped into the reactor; any excess effluent that was withdrawn (more
than 400 mL) was pumped back into the reactor to maintain digester volume.

(9) The portion of the effluent left from the original 400 mL, after
taking samples, was stored in a 5~gal carboy at room temperature to be used as
seed sludge for the next run.

(10) The wet test meters were read again to give an initial gas volume.
The gas was vented out of the water displacement system.

(11) The feed and effluent lines to the digesters were cleaned each day.

The daily feeding and sampling procedures were slightly different for
run 4.

(1) The gas volume measurements and ambient temperature readings were
taken, and the time was recorded.

(2) The agitator speed was increased from 200 to 500 rpm for at least 5
min to ensure that complete mix conditions were achieved and to break up any
solids deposits on the bottom or walls of the reactor.

(3) Four hundred milliliters of effluent were withdrawn. As the digested
sludge was being pumped into a beaker, the pH was measured.

(4) Each beaker, containing 400 mL of sludge, was stirred vigorously, and
while stirring a sample of the sludge was taken for analysis.

(5) The feed sludge pH was measured and adjusted with the appropriate lime
as necessary.

(6) Approximately ! L of feed sludge was transferred to a volume cali-
brated aspirator bottle on top of each digester (Fig. 2). A magnetic mixer
was used to keep the feed completely mixed.

(7) The drain valve on the feed line to the digester was opened to allow
the feed line to fill (displacing as much air as possible).

(8) A sample of each feed sludge was taken from the feed drain valve,
(9) The feed volume in the aspirator bottle was then lowered to the 400 mL
mark. While stirring continued in the aspirator bottle, a pinch clamp on the

line going into the reactor was opened, allowing 400 al, of feed to be intro-
duced into the digester via gravity flow.

(10) The remainder of the feed sludge was returned to the 20 L container
and again refrigerated.

(11) The feed system and effluent lines were cleaned with water.
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(12) Gas collection bottles were filled with a salt-saturated 1 M
HZSOA/water solution (the same solution was used in the gas collection gystem
to prevent absorption of CO, and CH, into water). The connecting tubing lines
were also filled with the salt/H2804/water solution.

(13) The pressure release valve was opened, and the gas displaced the
water gsolution from the gas sampling bottles. The sample bottles were sealed.

(14) Onsite analysis for C02 was performed using an Orsat analyzer. A
second sample was analyzed on a gas chromatograph for CH,.

(15) The remaining gas in the collection system was bled off, and the
system was reset for the next day’s gas collection.

RESULTS

Three digesters were operated in parallel for each run. Four consecutive
runs were made between August 1979 and May 1981. Table 8 presents the dura-
i tion of each run and status of each reactor.

pH

The pH of each reactor was monitored daily. The pH profile of each
reactor during runs 1 through 4 is presented in Figures 4 through 7. The pH
in all cases remained in the 6.7 to 7.3 range. The pH in reactors 1 and 3 of
run 4 increased gradually during the period Julian dates 1075 to 1110. Sodium
addition began on Julian date 1075 and continued to the end of the study.
(Note: For Julian dates the first digit denotes the year, and the last three
digits denote the day of the year, e.g., 1075 is the 75th day of 1981.)

PHOSPHORUS

Soluble phosphorus was monitored in the digester feed and effluent in
order to evaluate resolubilization of phosphorus during digestion. The aver-

age soluble phosphorus concentrations for the feed and effluent are presented
in Table 9.

AMMONIA

Ammonia was monitored in both the reactor feed and the effluent. The

average ammonia concentrations for the reactor feed and effluent are presented
in Table 10.

VOLATILE ACIDS

The volatile acids within each reactor were monitored and used as an b
indicator of process stability. Profiles of the volatile acids for rums 3
1 through 4 as a function of time are presented in Figures 8 through 11,
regspectively. The volatile acids concentration generally remained below 500
mg/L as acetic acid. Required maintenance on the internal bearings of the
fermentors resulted in process upset due to oxygen toxicity. A rise in vola-

tile acid concentration was observed immediately after each required bearing :

maintenance. ’
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TABLE 9. AVERAGE SOLUBLE PHOSPHORUS CONCENTRATIONS

Feed Ef fluent
PO, -P PO, ~P
Reactor Run Julian Date ng/L mg?L
1 1 9309~-0008 6.1 7.7
2 1 9309-0008 21.6 12.1
3 1 9309-~0008 6,1 7.3
1 2 0050~0099 2.4 9.6
3 2 0050-0099 2.4 8.3
1 3 0125-0199 1.4 8.6
2 3 0125-0191 23.1 10.4
3 3 0125~-0190 1.3 9.0
1 4 0291-1126 4.9 15.7
5 2 4 0294-1126 35.6 22.4
3 3 4 0312-1126 7.2 12.6

TABLE 10. AVERAGE AMMONIA NITROGEN CONCENTRATIONS

Feed Ef fluent
NH,=-N NHA=-N
Reactor Run Julian Date mg/L mg/L
1 1 9261-9313 100 203
1 1 9314-0008 58 243
2 1 9261-0008 72 147
3 1 9261-9313 90 157
3 1 9314-0008 58 183
1 2 0050-0099 62 237
3 2 0050-0099 63 225
1 3 0125-0199 37 131
2 3 0125-0191 42 126
3 3 0125-0190 37 132
1 4 0291-1126 132 267
2 4 0294-1126 102 325
3 4 0312-1126 118 221
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GAS PRODUCTION

Gas production was measured daily. Due to temperature and barometric
pressure changes the gas production was calculated as L/day at standard tem-
perature (0°C) and standard pressure (1 ATM). The gas productions for the
reactors are presented in Figures 12 through 22.

Gas composition was monitored qualitatively on runs 1 and 2 by igniting
the gas. This was merely a check for the presence of met *, Gas analysis
was carried out on the latter portion of run 3 (0170-0199, by uti' zing an
Orsat \V gas analyzer. The gas from the control digester averaged 24.5 percent
CO, and approximately 73.5 percent CH,. The gas from the "wo lime <lndge
digesters averaged approximately 15.5 percent (0, und 2.7 [_1c° ¢ (..« These
values are in the range normally expected for primary sludge? a1 lime
sludge?® digestion. During run 4, the gas quality was measurcd, ar. che
average CO, percentage is presented in Table 11. The daily wethane ;~oduction
is shown for run 4 in Figures 20 through 22.

TABLE 11. AVERAGE CO, GAS COMPOSITION

DURING RUN &4
% Co,
Reactor Average High Low
1 17 24 12
2 28 40.5 17.5
3 18 23.5 11.5

The analytical results obtained using the Orsat Analyzer ®were confirmed
by periodic gas analyses by gas chromatography. Good agreement was found
between the Orsat and chromatographic analyses.

HEAVY METALS

The concentration of heavy metals was first measured at the end of run 3
(Table 12). During run 4, monthly heavy metal scans were performed, and
Table 13 presents the average concentrations. Both total and soluble concen-
trations were determined.

ALKALINITY

The total alkalinity was measured daily in the reactor effluents. The
average alkalinity during each run is shown in Figure 23. Since alkalinity in
this system primarily results from C!(OH)Z addition and is in the form of
Ca(HCO3)2, a linear relationship would be expected between calcium ion concen-

tration and the total alkalinity. This relationship is shown in Figure 24 for
run 4.
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TABLE 12. HEAVY METALS IN DIGESTER EFFLUENTS
AT THE END OF RUN 3
Control Lime Digester
(mg/L) ___ (mg/L)
Heavy Metal Total Soluble Total Soluble
Zinc 31-7 <100 41‘04 <1¢0
Nickel 12-4 <1 -0 908 <l -0
Iron 329.0 <1.0 371.0 <1.0
Cadm{ un - - - -
Chromium 12.8 <1.0 9.0 <1.0
Copper 9.4 1.0 9.4 <1.0
Iﬁad 4.0 <100 501 <1 .0

TABLE 13. AVERAGE HEAVY METAL CONCENTRATIONS IN DIGESTER EFFLUENTS

DURING RUN 4

Digester 1 Digester 2 Digester 3
(mg/L) (mg/L) (mg/L)
Heavy Metal Total Soluble Total Soluble Total Soluble
Zinc 13.5 <0.1 10.0 <0.1 13.3 <0.1
Nickel 2.0 <2.0 2.0 2.0 <2.0 <2.0
Iron 143.2 1.0 128.0 <1.0 123.3 <1.0
Cadmium <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 ﬁ
. Chrom{ um 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 ;
; ) Copper 8.0 <0.2 7.0 <0.2 8.6 <0.2
L Lead 1.0 <1.0 1.0 <1.0 <1.0  <1.0
!
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Figure 23.

Average total alkalinity for each digester.

Commercial grade lime

was used to make sludge for digester 1, all runs, and for digester 3,

runsg 1 through 3.

o ittt o

Digester 2 served as the control unit.
lime was used to make sludge for digester 3, run 4.
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LIGHT METAL CATIONS

A scan for the light metal cations was done at least once per week during
run 4, The profiles of the light metal cations for each digester are shown
for potassium, sodiun, magnesiwm, and calcium in Figures 25 through 28,
respectively, Potassium was not added to any of the digesters, and the
potassium concentration dropped to a steady-state value throughout the last
100 days of run 4 (Fig. 25). Sodium additions to digesters 1 and 3 began on
Julian date 1075 and continued until the end of run 4 (Flg. 26). Two differ-
ent grades of lime were used during run 4. Digester 1 received commercial
grade lime, whereas digester 3 received reagent grade lime. Consequently,
different magresium levels were found, as shown in Figure 27. The differences
between the two types of lime can also be seen in the calcium levels, as shown
in Figure 28.

Calcium concentrations for each reactor were calculated from alkalinity
data (Fig. 24) for runs 1 to 3 and are presented with calcium data from run 4
in Figure 29.

VOLATILE SOLIDS DESTRUCTION

Figures 30 through 34 show volatile solids destruction as a function of
volatile solids applied for all digesters and runs. The relationships in all
cases are linear. A least squares analysis was performed on the data. The
results of the least squares analysis are presented in Table 14. A comparison
of parameters from the best fits to the data using the analysis of variance
technique to test for differences in slopes and differences in intercepts was
performed on all the runs. A shift in the destroyed volatile solids versus
applied volatile solids was present at about 8,000 mg/L Ca. Therefore, 8,000
mg/L Ca was used as the transition concentration between high and low lime
levels. Because there was so little scatter in the data, a 95 percent confi-
dence interval had to be imposed on the statistical comparison in order to
obtain meaningful results. The results of the comparison of slopes and inter-
cepts are shown in Table 15. Table 16 presents a statistical analysis of
slope and intercept comparisons for run 4. The least squares composite lines
are presented in Table 17. Both the slopes and intercepts must show no sig-
nificant difference for the lines to be considered the same. If the slopes
are different, the test for the intercepts does not apply.

cop

The relationship between COD destroyed and COD applied is shown in
Figure 35. A least squares analysis and statistical slope and intercept
comparisons were done as for the volatile solids (Tables 18 and 19,
respectively).

Methane production as a function of COD applied is presented in Figure
36. Equations of the three lines of best fit from Figure 3€ are presented in
Table 20. Due to scatter in the COD data, weekly averages for COD and gas
production were used in preparing Figure 36 and Table 20.

Figure 37 shows a plot of methane produced per gram COD applied versus

total alkalinity. Once again weekly averages were used. Table 21 shows the
least squares analysis for each reactor and a composite line for all the data.
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CALCIUM CONCENTRATION (mg/L as Ca)

4000 8000 12,000 16,000 20,000

1 L L | 1

RUN#1 9262-9313

RUN#1 g313-0008

RuUlN#2 005G-0089

¢ 0'653175“ RUN#3 0125-0192
RUN#4 0291-0338
RUN#4 0343-1072
RUN#4 0343-1126
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RUN# 1 9262-0008
DIGESTER
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1
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Figure 29. Average calcium concentrations for each digester. Commercial
grade lime was used to make sludge for digester 1, all runs, and
for digester 3, runs 1 through 3. Digester 2 served as the con~

s
{
trol unit. Reagent grade lime was used to make sludge for 1
digester 3, run 4. 1
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TABLE 14. SUMMARY OF LEAST SQUARES ANALYSIS OF GRAMS
VOLATILE SOLIDS DESTROYED VS. GRAMS VOLATILE SOLIDS APPLIED
DURING RUNS 1 THROUGH 4

Reactor Run Julian Date Slope Y-Intercept R?
1 1 9261-9313 1.000 -2.509 0.828 :
1 1 9314-0008 0.928 -3.509 0.882 | 1
2 1 9261-0008 0.753 -0.828 0.814 |
3 1 9261-9313 0.832 -1.,298 0.784 :
3 1 9314-0008 0.916 -3.223 0.805 i
1 2 0050-0099 0.771 -2.398 0.758
3 2 0050-0099 0.887 -2.962 0.826
1 3 0125-0199 0.801 =2.225 0.602
2 3 0125-0191 0.952 ~2.274 0.702
3 3 0125-0190 0.960 -3.129 0.880
1 4 0291-0338 0.960 -2.698 0.923
1 4 0343-1073 0.961 -3.389 0.876
1 4 1075-1104 1.040 -3.704 0.779
1 4 1106-1126 0.229 +1.937 0.555
2 4 0294-1126 0.904 ~-1.857 -
3 4 0312-1023 0.992 -2.197 0.990
3 4 1023-1072 1.024 -2.822 0.971
3 4 1075~1104 0.758 -1.225 0.872
3 4 1106~1126 2.783 -17.724 0.490
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; i TABLE 17. SUMMARY OF COMPOSITE LINES FROM THE

P STATISTICAL COMPARISON OF SLOPES AND INTERCEPTS
) OF VOLATILE SOLIDS DESTRUCTION

| DURING RUNS 1 THROUGH 3

Reactor Run Julian Date Slope Intercept
1 1 9314-0008
3 1 9314-0008
1 2 0050-0099
3 2 0050-~0099 0.785 -2.377
1 3 0125-0199
3 3 0125-0191
1 1 9261-9313 0.924 -1.948
3 1 9261-9313

TABLE 18. SUMMARY OF LEAST SOUARES ANALYSIS OF GRAMS COD DESTROYED
VS. COD APPLIED DURING RUN 4

Reactor Run Julian Date Slope Intercept r2
!
2 4 0294-1126 0.939 -3.362 0.931
3 4 1033-1072 1.036 -4,167 0.685
3 4 1075-1104 0.763 -1.289 0.840
3 4 1033-1104 0.910 -2.992 0.839
3 4 1106~-1114 0.746 -1.041 0.458
3 4 1115~-1126 0.958 -9.985 0.886
65
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TABLE 20. SUMMARY OF LEAST SQUARES ANALYSIS OF METHANE

PRODUCED VS. COD APPLIED DURING RUN 4
!
Reactor Run Slope Intercept
% - 1 4 0.207 0.002
|
: 2 4 0.225 -0.168
3 4 0.231 -0.237
TABLE 21. SUMMARY OF LEAST SQUARES ANALYSIS OF METHANE d
PRODUCED PER COD APPLIED VS. TOTAL ALKALINITY
| DURING RUN 4
Reactor Run Slope Intercept R2
1 4 -0.0000022 0.27 ~0.26405 {
2 4 -0.0000143 0.25 -0.20220
! 3 4 -0.0000004 0.22 -0.02994
Composite -0.0000003 0.21 -0.02133 { 4
;
1
L
|
.t
-3
.
; 9
!
|
1
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DISCUSSION

During this work numerous causes of digester failure were investigated to
determine the cause of apparent poor digester performance when digesting lime
sludges. One common cause of digester failure is a result of unstable feed
and operating conditions. During this work minor upsets did occur as a result
of required equipment maintenance procedures. During replacement of internal
bearings, oxygen was unavoidably introduced into the reactors. Gas production
dropped immediately, due to oxygen toxiclity. Data obtained during these
periods were discarded until gas production levels returned to normal, indi-
cating full recovery of the digesters.

Preliminary work performed before run ! indicated that the lime digesters
were unstable at a retention time less than 15 days. To ensure digester
stability, a longer retention time (27.5 days) was chosen.

The volatile solids reduction observed for the major portion of the study,
approximately 30 percent, is low when compared to an average volatile solids
destruction of from 40 percent to 50 percent found for lime sludges by
others17>18 at comparable solids retention times and temperatures. The 30
percent volatile solids destruction found for the lime sludge digesters 1 and
3 (Fig. 38) represents less than 60 percent of the volatile solids destruction
found in the control digester, digester 2. This reduction in digester effi-
ciency, combined with the observation that the sludge was not being completely
stabilized in the lime sludge digesters, leads to the conclusion that some
toxicity or inhibition was experienced in the lime sludge digesters. The fact
that reduction in lime digester efficiency occured only after approximately 60
days of stabilized operation (approximately 90 days including startup) makes
it appear likely that the inhibition resulted from the accumulation of a
compound or compounds in the lime digesters. Since a similar reduction in
efficiency was not found in the control digester, it appears likely that the
inhibitory substance was either in the lime, or was more effectively concen-
trated in the lime sludge.l?

Organic overloading was discussed earlier and may be rejected as a
possible cause of the inhibition. Both heavy metal toxicity and ammonia
toxicity can also be ruled out as discussed previously.

It has been suggested by at least one author3! that chemically coagulated
sludges may be less biodegradable than raw primary sludge. It is clear that
in this study no such effect was found., Figure 38 clearly shows that during
the early portion of the study (the first 60 to 90 days) the volatile solids

reduction in the lime sludge digesters was superior to that found in the
control digester.

Digesters ! and 3 of run 1 maintained volatile solids destruction at
approximately 60 percent over the first 60 days, Julian Dates 9362-9313, while
the control digester maintained volatile solids reduction at a constant 49
percent. During start up, digesters 1 and 3 were fed raw primary sludge,
until the feed rate gave a 27.5 day retention time and digester operation
stabilized. After digester operation was stabilized, lime sludge was gradu-
ally substituted for the raw primary sludge over a 3-week changeover period.
Run 1 officially started once the lime sludge was being used as the sole feed
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source. Runs 2 and 3 did not have the long acclimation period; therefore the
initial high volatile solids reduction period was not evident. Run 4 is not
shown in Figure 38 because 1t too did not have a long acclimation period and
does not demonstrate the initial high volatile solids destruction percentage.

The initial 60 days of run 1, theoretically two complete turnovers of
digester contents, maintained a higher volatile solids destruction percentage
(Fig. 38) than the control unit, digester 2. Thus it is apparent that the
lime sludge is no less biodegradable, under favorable digester operating
conditions, than the raw primary sludge.

The most likely source of the inhibitfon observed in the lime sludge
digesters after the first 60 to 90 days operation is cation toxicity due to
calcium, magnesium, or a synergism between them. As previously stated, work
performed in the early 1960°s has shown that light metal cations are capable
of causing stimulatory, inhibitory, or toxic effects in anaerobic digesters.

In order to be certain that cation toxicity is the cause of the digester
inhibition, certain other forms of inhibition and/or toxicity must be ruled
out.

pH

The pH of an anaerobic digester is critical to proper operation. As may
be seen from Figures 4 through 7, the pH of the digesters remained at all
times within normal operating pH ranges. While there was some variation in
digester pH during the study, it may be seen from Figures 4 through 7 that
these changes were gradual and would not be expected to cause operational
difficulties.

PHOSPHORUS

The soluble phosphate in the digesters expressed as PO,~P was low through-
out the study (Table 9). A small increase in the soluble phosphorus concen-
tration across the digester was noted in the lime-fed digesters during all
four runs. The increase in soluble phosphorus is not significant when com-
pared to the total phosphorus load in the sludge.

Assume 1 L of sewage containing 10 mg/L of PO,-P 18 treated with lime to
pH 9.5. Also, assume the resulting sludge is 5 percent of the original volume
and that 90 percent of the phosphorug is removed. The resultant soluble
phosphorus concentration will be 1 mg/L as PO,~P, and 9 mg of phosphorus as
PO,-P will be concentrated in the sludge. The total phosphorus concentration
then becomes 180 mg/L insoluble PO;~P plus 1 mg/L soluble PO,-P (a total of
181 mg/L P0,-P). The possible re-release of a few mg/L PO,~P is not
significant,

In all cases the effluent phosphorus concentration from digesters 1 and 3
was lower than the effluent concentration from digester 2 (control
digester) . Recirculation of the digester supernatant from lime s8ludge
digesters to the head of the plant, therefore, results in a lower recycle
phosphorus load than from recycle of supernatant from anaerobic digestion of
sludges from conventional treatment processes.
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AMMONIA

S

Ammonia may result in beneficial, adverse, or no effect on anaerobic
digestion. The ammonia concentrations in all digesters were in the range
vielding beneficial or no adverse effects (Table 10). The analytical methods
used did not involve digestion or distillation of the sample to ensure com-
plete ammonia recoveries in runs 1, 2, and 3; however, the samples were dis-

. tilled prior to analysis during run 4. It is apparent that the ammonia
concentration in runs 1 through 3 is sufficiently low so that the revision in
analytical technique will not raise the measured concentrations of ammonia to
values within the inhibitory or toxic range.? Therefore, it is clear that
ammonia toxicity 1s not responsible for the decrease in digester efficiency.

VOLATILE ACIDS

The normal operating range for volatile acids in anaerobic digesters is
200 to 800 mg/L as acetic acid.32 As may be seen in Figures 8 through 11, the
volatile acid concentration remained at or below the normal operating range
except just prior to total digester failure as a result of excessive sodium
addition. Because of oxygen exposures during maintenance, the volatile acids
did rise at certain times above 800 mg/L. Therefore, volatile acid toxicity
is not the cause of the inhibition.

GAS PRODUCTION

The gas production was highly variable as a result of large variations in
digester loading. Drops in gas production, such as in reactor 2 during run 4
(Fig. 21) may be explained due to required maintenance on the internal mixing
mechanism. During this maintenance, air was introduced into the digester,

In the latter part of run 3 and all of run 4 the average gas composition
corresponded to values expected from the literature.?*18 Some variation was
seen in the gas quality, but this is a normal occurrance. Fxposure to oxygen
and organic loading changes induce a gas quality change. After maintenance
was completed and the organic load varilations ended, the gas quality returned
to normal values.

LOADING

Digester upsets and failures have been noted as a result of organic over~-
loads.9*11713 7Typical design volatile solids loadings for mesophilic, high-
rate anaerobic digesters are from 1,600 to 6,400 grams volatile solids per day
per cubic meter of digester capacity. The lime sludge digesters (digesters 1}
and 3) were loaded in the range of 170 to 976 grams volatile solids per day
per cubic meter of digester capacity. The average loadings were from 407 to
558 grams volatile solids per day per cubic meter of digester capacity for
digesters 1 and 3. The control digesters had an average loading from 286 to
623 grams volatile solids per day per cubic meter of digester capacity.

Inspection of Figures 30 through 34 indicates that volatile solids
destruction vs. volatile solids applied follows a linear relationship. This
indicates that the systems are not overloaded. If the systems were over-
loaded, the lines would reach a maximum and volatile solids destruction would
begin to level off.
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From the above it is clear that organic (volatile solids) overloading may
be eliminated as the cause of reduced lime sludge digester efficiency.

HEAVY METALS

The heavy metals scan at the end of run 3 (Table 12) indicates that heavy
metal toxicity was not the cause of digester inhibition. At no time during
run 4 did the heavy metals concentration approach the severely inhibitory
range; therefore, heavy metals poisoning may be ruled out as a cause of the
inhibition shown in Figures 30 through 34.

VOLATILE SOLIDS DESTRUCTION

The method of operation utilized during runs 1 through 3 resulted in the
data representing one long run for each digester, rather than three independ-
ent runs. The digester effluent removed daily that was not required for
analysis was mixed and stored. At the end of the first run, the sludge from
all three digesters was mixed with the sludge stored during the run and used
as a seed to start the digesters for run 2. This practice was repeated for
the subsequent start-up of run 3. Run 4 was started with fresh sludge from
the Hagerstown sewage treatment plant.

The practice of mixing and reusing the sludges resulted in one long run
with different steady-state plateaus, as may be confirmed by inspection of
Figures 32 and 38 and Tables 15 and 17. 1In Figures 32 and 38 it may be
observed that volatile solids reduction as a function of applied load is
statistically identical for the lime digesters from Julian dates 9314 to
0199, The buildup of alkalinity in all three digesters as the study proceeded
is shown in Figure 23. The increase in alkalinity observed in each succeeding
run would not be expected had new sludge been used to initiate each run. This
is apparent from data obtained from the control unit, digester 2. No increase
in alkalinity with each run would be expected. The increase observed may be
attributed to the alkalinity contained in the lime digester effluents which
were mixed with control digester effluent and used as a seed to start runs 2
and 3. For these reasons, the data from all three runs will be treated as a
single run for purposes of discussion and interpretation.

It is apparent from inspection of Figures 30 through 34, Figure 38, and
Table 17 that the rate of volatile solids destruction initially decreases as
the duration of the run lengthens. Digesters 1 and 3 of run 1 show a marked
decreagse in volatile solids destruction after approximately 60 days into the
run (90 days including startup). The volatile solids destruction rate then
remains constant at a much lower value as indicated by the shift to the right
of the operations line in Figures 30 through 34 and as indicated by the down-
ward shift of the operations lines in Figure 38.

A preliminary cation scan performed at the end of run 3 shows elevated
calcium and magnesium levels (Table 22). During run 4 the light metal
cations, Na, Mg, K, and Ca, were monitored. The potassium levels were well
below the inhibitory levels presented in Table 3. Magnesium concentrations of
up to 500 mg/L (0.02 M) were observed in reactor 1 (commercial lime).

Reactor 3 had magnesium concentrations of 200 mg/L (0.008 M), while the con-
trol unit consistently ran at 50 mg/L (0.002 M) magnesiumn. Sodium levels
remained constant at approximately 100 mg/L until Julian date 1075, when
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NaHCO4 additions were begun to raise the sodium level. Calcium levels in

reactor 1 approached 15,000 mg/L (0.37 M) and 10,000 mg/L (0.15 M) in reactor
3 by the end of run 4.

TABLE 22. PRELIMINARY CATION SCAN
AT THE END OF RUN 3

Concentration (mg/L)

Lime Sludge Control
Digester #1 Digester #2
Cation Soluble Total Soluble Total
Calcium 233 19,500 153 7,490
Magnesium 229 529 62 218

Kugelman and McCartylS defined many antagonistic and synergistic cation
combinations as well as single cation 50 percent inhibition levels. Calcium
exhibits a 50 percent inhibition at 0.11 M (4,400 mg/L as Ca), while magnesium
exhibits a 50 percent inhibition at 0.08 M (1,900 mg/L as Mg). Magnesium
levels in digesters 1 and 3 never reached the 50 percent inhibition level,
whereas the calcium levels exceeded the 50 percent inhibition level. The
calcium/magnesium pair both in digesters 1 and 3 fall within the synergistic
system range. The synergistic and toxic cation levels taken from the Kugelman

and McCarty paper were derived for enrichment cultures of acetate utilizing
methanogenic bacteria only.l5

Volatile solids destruction for the four runs may be broken into three
operating regimes: 1) control (no lime addition), 2) low calcium concentra-
tions, and 3) high calciumn concentrations. A definite shift in the volatile
solids destroyed vs. volatile solids applied line occurred at a calcium con-
centration of approximately 8,000 mg/L. A comparison of the control units of
runs 1 and 3 reveals that only run 1 was a true control. Digester 2 run 3 has
a considerable amount of calcium (Fig. 23); enough calcium to begin to cause a
shift in the operating line (Fig. 30). Figure 30 shows a definite reduction
in digester efficiency as measured by volatile solids reduction, which was
statistically verified in Table 15. The only major difference between run 1
and run 3 on reactor 2 was the average total alkalinity and hence the calcium
concentration (Figs. 23 and 29). The calcium levels of run 3 lie in the
moderately inhibitory zone (Table 3). The average calcium concentrations are
2,757 mg/L for run 1 and 5,443 mg/L for run 3.

The next comparison to be made is between volatile solids destruction for
digester 1 and digester 3 during the first part of run 1, Julian dates 9262 to
9313, Figure 31 shows that the two lines are nearly identical, and statisti-
cal analysis shows that the two lines can be considered the same (Table 15).
Average calcium concentrations of 8,140 mg/L for reactor 1 and 4,931 mg/L for

reactor 3 (Fig. 29) when compared to Table 3 show that the reactors are oper~
ating in a calcium inhibitory regime.
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A comparison of volatile solids destruction for digester 1 during runs 1,
2, and 3, and digester 3 during runs 1, 2, and 3 on Figure 32 yields a sta-
tistically significant composite line. The lines with the highest and lowest
slopes were compared and did not differ significantly as to slope or intercept
(Table 15). When comparing the calcium levels of Figure 29 to Tahle 3, one
sees that the six operating lines all lie in the strongly inhibitory zome.
Calcium concentrations greater than 8,000 mg/L do not seem to add to the
inhibition.

The reduction in volatile solids destruction efficiency increased with
increasing calcium concentration up to approximately 8,000 mg/L. As may be
seen in Figure 32, at calcium concentrations between 8,000 and 15,000 mg/L,
the inhibition of volatile solids reduction becomes constant.

Figure 39 shows a comparison of the composite low and high calcium level
operating lines with the control (digester 2, runs 1 and 3). Digester 2, run
3 and the composite line for low calcium levels are statistically identical
(Table 15). In general, Figure 39 shows that as the average calcium concen-
tration is increased, the efficiency of the digester decreases.

Figure 33 compares volatile solids destruction for digester 1, run 4, to
the control digester for run 4. Digester 1 was run on sludge generated by
commercial lime additions to pH 9.5. During the low-level calcium phase,
Julian dates 0291-0338, an average of 7,060 mg/L as Ca was present. From
Julian dates 0343-1073, calcium levels averaged 11,891 mg/L. The efficiency
of volatile solids destruction was considerably decreased, as is indicated by
the shift of the lines to the right. The control, low-level lime, and high-
level lime lines were tested statistically and found to be different
(Table 16). During the time period Julian dates 1075-1104, the sodium
concentration was increased to a level of 1,000 mg/L as Na. The time period
Julian dates 1106-1117 had sodium values greater than 1,000 mg/L as Na and the
volatile acids were increasing.

Table 14 presents the curve fit data and statistical comparison of the
slope and intercept of volatile solids destroyed versus volatile solids
applied. The low-level calcium, high-level calcium, and less than 1,000 mg/L
sodium lines all have statistically equal slopes according to the 95 percent
confidence limits set on the test (Table 16). Only the slope for the control
line is different.

Volatile solids destruction for digester 3, run 4 is compared to the run &4
control in Figure 34. Sludge for reactor 3 was produced using reagent grade
lime additions to pH 9.5. During the period Julian dates 0312-1023, an aver-
age calcium level of 5,298 mg/L Ca was maintained. The low-level calcium line
appears to be identical to the control line but the statistical analysis
(Table 16), shows that they are indeed different lines. Julian dates 1026~
1072 represent the high levels of calcium, with an average value of 8,727 mg/L
as Ca. The high-level calcium line is parallel to the low-level calcfium line
and has a different intercept. The line representing high calcium levels and
a sodium level of less than 1,000 mg/L covers Julian dates 1075-1104. This
line is significantly different from the high calcium level line without
sodium addition. After Julian date 1104, the sodium additions continued, and

digestion performance further deteriorated, as demonstrated by the line Julian
dates 1106-1126.
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In general, digesters 1 and 3 exhibited the same pattern of behavior
although the high calcium levels of digester 1 were not reached in
digester 3. The only difference between the two systems was the level of
magnesium. Reactor | maintained magnesium levels between 400-500 mg/L
(Fig. 27), whereas reactor 3 maintained a 200 mg/L magnesium level throughout
the study. The higher magnesium levels in digester 1 could have been enough
to produce a synergistic pair between calcium and magnesium.

A comparison between runs 1 through 3 and run 4 must be made to demon-
strate the reproducibility of conditions within the systems. The control
reactors are compared in Figure 40. Digester 2, run 1 and run 4 are identi-
cal. This suggests that the basic characteristics of the raw sludge over the
2-year time period are constant.

The next major comparison, Figure 41, is between reactors containing low
levels of calcium (less than 8,000 mg/L as Ca as suggested by Table 3). The
trend: the higher the calcium level the farther the line is displaced to the
right, continues to hold except in the case of digester 3, run 4. Digester 3,
run 4 has much lower magnesium levels, which appear to retard the inhibi-
tion. Therefore, calcium and magnesium must form a synergistic pair.

The high-level calciumn lines are compared in Figure 42. The composite
line from runs 1 through 3 and reactor 1, run 4 overlap. The average calcium
level for reactor 1, run 4 is 11,900 mg/L as Ca, while the average calcium
level computed from Figure 29 is 11,500 mg/L for the composite line from runs
1 through 3. Reactor 3, run 4 does not exhibit the same degree of inhibi-
tion. This is probably due to the lower magnesium levels; however, the cal-
cium level, 8,700 mg/L as Ca, is considerably less than for the other two
lines and may be in a transitory area,

Figure 43 is a plot of percent volatile solids destroyed vs. total alka-
linity. This figure is based on an average load of 5.24 grams volatile
solids/day (which is an average of the average loads for all runs). The
percent volatile solids destroyed is calculated from the data in Figures 30
through 34. Figure 23 presents the average alkalinity used for each digester
and run. Once again the dependence on alkalinity (calcium concentration) is
evident. As the alkalinity increases, the efficiency of volatile solids
destruction decreases. A significant break in the line occurs at approxi-
mately 17,000 mg/L total alkalinity, which translates to 7,500 mg/L as Ca.

The evidence thus far indicates that the acid formers are primarily
affected. As calcium levels increase, volatile solids destruction
decreases. Only the acid formers effect volatile solids destruction. This is
further supported by the fact that during the portions of run 4 before sodium
additions and runs 1 through 3, the levels of volatile acids remained in the
normal operating range. Only after sodium addition did the volatile acids
concentrations approach or reach toxic levels. If the methanogenic bacteria
were primarily affected, the volatile acids should have rapidly increased and
eventually caused digester failure before excessive concentrations of sodium
were present. .

Sodium was added to the reactors in an attempt to reverse or lessen the
inhibition. Calcium or magnesium forms an antagonistic pair with
sodium.1%»15125:26 The antagonism was not evident at any sodium concentration
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up to 1,000 mg/L (0.04 M). Sodium levels above 1,000 mg/L began to cause an
increase in volatile acids (Fig. 11) and a decrease in volatile solids
destruction as shown in Figures 33 and 34. It is clear that sodium or
synergistic sodium/calcium toxicity occurs at levels greater than 1,000 mg/L
as sodium, At this sodium level, digester failure occurs.

con

Previous investigationsl5+25 {ndicate that inhibition of methane formers,
and, therefore, of COD destruction may occur due to cation toxicity. This
result was not found in the current study. The destruction of COD as a func-
tion of applied load (Fig. 35) remained constant at all calcium and magnesium
concentrations. Statistical analysis supports this observation (Table 19).

The addition of nigh levels of sodium (>1,000 mg/L), however, does result
in inhibition of methanogenic bacteria. This may be seen from Figure 35 and
verified by the statistical analysis in Table 19- °

Conversfon of COD to methane also was not affected. The linear relation~
ships between volume of methane produced per day and COD applied are identical
for all three digesters (Fig. 36). Once the sodium levels exceed 1,000 mg/L,
the efficiency of COD conversion drops off (Fig. 36). To further verify the
lack of calcium/magnesium inhibition, a comparison of methane produced per
gram COD applied versus alkalinity (calcium) was made and is shown in Figure
37. As may be seen from Figure 37 and Table 21 the methane produced per gram
of COD applied is independent of alkalinity (calcium) for each individual
reactor as well as the composite. Therefore, no inhibition to methanogenic
bacteria was observed in this study up to alkalinities of 35,000 mg/L as CaC03
(15,000 mg/L as Ca).

McCarty and Kugelmanl5+25 have reported that high calcium and magnesium
levels inhibit methanogenic bacteria. However, their work was done in enrich-
ment cultures of methanogenic bacteria, rot on the acid formers. The conclu-
sions drawn from Figures 35, 36, and 37 showing COD and volatile solids
destruction versus applied load as a function of cation concentration do not
necessarily conflict with the previous work.

Consider the mechanism of methane formation:

acid formers

Organic matter volatile acids

hydrolysis

Volatile acids -methane former§> methane + CO,

If methane formation 1s upset, volatile acids build up, and the process

fails. 1If the acid formation step is upset, a reduction in volatile solids
destruction occurs, and the process doeg not fail. The relative importance of
acid formation versus methane formation must be determined. At retention
times less than 10 days, methane formation is the rate limiting step.33 At
retention times greater than 15 days, hydrolysis of the precursor organic
material for subsequent acid formation is the limiting step., With a 27.5-day
tretention time, the experimental runs are all in the hydrolysis limiting
regime. Since a larger-than-needed methanogenic population is present, it is
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possible to inhibit both the acid formers and methane formers at unequal rates
and still maintain a system in equilibrium. Calcium can be added in larger
concentrations until the rate of acid formation exceeds the rate of acid
destruction and the process fails. The process can then survive at a greatly
reduced volatile solids destruction efficiency, until the rate of acid
destruction becomes less than the rate of acid formation.

CONCLUSIONS
1. 1Inhibition of volatile solids destruction was shown to be dependent upon
the calcium levels up to 8,000 mg/L of Ca.

2. Volatile solids destruction inhibition appears to become constant between
8,000 and 15,000 mg/L as Ca.

3. Some synergistic effect of magnesium was noted on the inhibition of vola-
tile solids destruction.

4. No antagonism to the inhibition of volatile solids destruction due to
sodiumn addition up to 1,000 mg/L as Na was noted.

5. Synergism with calcium inhibition was noted, causing digester failure at
sodium levels greater than 1,000 mg/L as Na.

6. No inhibition of methane formers was noted at any calcium concentrations
up to 15,000 mg/L as Ca.

7. In a system treating lime sludge, inhibition of the acid formers due to
calcium and/or magnesium was sufficient to mask any inhibition of methane
formers which may have been present.

8. Despite high lime additions, the pH in all lime fed digesters remained in
the range normally found for anaerobic digestion.

9. No significant resolubilization of phosphorus during digestion was
observed.

10. Lime sludge is as biodegradable as raw primary sludge; however, the
digested lime sludge is not completely stabilized.
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